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ABSTRACT OF THE DISSERTATION

Linear and Nonlinear Theory of Grid Excitation
of Low Frequency Waves in a Plasma
by -
George Lawrence Johnston
Doctor of Philosophy in Physics
University of California, Los Angeles, 1967

Professor Alfredo Banos, Jr., Chairman

The steady-state response of an infinite, uniform expanse of hot,
rarefied plasma to low-frequency excitation by a pair of idealized
parallel plane grids is investigated. The Vlasov equation for grid
excitation of longitudinal waves is considered both in the linearized
(infinitesimal amplitude) 1imit and in the weakly nonlinear case of
small but finite amplitude disturbances.

In the linearized theory, the Fourier inversion integral for the
spatial behavior of the potential excited in the plasma by a pair of
grids with finite spacing is evaluated by first transforming the
variable of integration from the Fourier transform variable k to
C = wo/kai , where W, is the driving frequency and ai is the ion
thermal speed, and then separating the integrand into two parts, one
principally responsible for the ion acoustic wave near the grid and
the other for the electron wave at large distances from the grid. . For

driving frequencies small in comparison with the ion plasma frequency,

ix



the resulting integrals are evaluated numerically along appropriate
deformed contours of integration. The path of steepest descents is
chosen for the ion integral; it includes a residue contribution from
the pole which gives the dominant behavior of the ion wave. In both
cases, the integrands undergo small phase changes over the chosen con-
tours. Numerical results are presented; in the dipole limit, the
results of Gould1 are recovered.

A perturbation series expansion of the potential and of the
species distribution functions in the (nonlinear) Vlasov equation
yields a hierarchy of equations associated with a smallness parameter
proportional to the amplitude of excitation. In each order the equa-
tions are linear in the perturbation quantities of that order and have
driving terms composed of quadratic combinations of lower order quan-
tities. For sufficiently small amplitudes of excitation, the principal
contributions to the response come from the first and second order
equations. In the first order, the linearized Vlasov equation is
obtained. In the second order, the steady-state response consists of
zero frequency and double frequency components. In the manner of
Landau, the second order equations are Laplace-Fourier transformed and
resulting velocity integrals are analytically continued and expressed
in terms of the plasma dispersion function. Confining our attention
to driving frequencies small in comparison with the ion plasma frequen- '
¢y, and approximating the driving terms (linearized response) by their

-dominant pole component, we obtain the Fourier inversion integrals for
the steady-state response. The integrals are evaluated numerically by

methods developed in .treating the linearized problem. The double



frequency component of the response is strongly damped, like an "ion
wave' but has a slow phase variation with distance, like an "electron
wave'. The zero frequency component is a polarization of the plasma

unaccompanied by species current densities.

1. R. W. Gould, Physical Review 136, A991 (1964).
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1. INTRODUCTION

The existing theory of waves in plasmas deals extensively with
the evolution in time of an initial perturbation in a plasma. Present
in much of the existing theory is the assumption of small disturbances,
which permits a linearized treatment. This dissertation considers the
less familiar problem of the steady-state response of a plasma to a
localized time-harmonic excitation. The dissertation treats not only
the linearized case but also the case of the weakly nonlinear response
to a level of excitation somewhat higher than that for which a
linearized treatment is appropriate.

Section 1 of this chapter contains a specific statement of the
problem. Section 2 contains a description of the Vlasov equation,
which embodies the kinetic theory formulation used in this dissertation.
Section 3 describes the Laplace-Fourier transform method of treating
the linearized Vlasov equation and presents the Fourier inversion
integral for the steady-state response of the plasma to excitation by
a localized external charge density in the linearized theory. In
Section 4 the analytic continuation of certain functions of a complex
variable which appear in the transform of the potential is obtained
as a necessary preliminary to the evaluation of the Fourier inversion
integral for the steady-state response.

Chapter II describes a novel method of numerical evaluation of the
Fourier inversion integral for the steady-state behavior of the
potential in the linearized theory. The method is applied to the case

of a distribution of external charge density different from that



previously considered. Chapter III describes a perturbation series
method of treating the weakly nonlinear response of the plasma to a
level of excitation somewhat higher than that for which a linearized
treatment is appropriate. The method is applied, by making a necessary
approximation, to the present problem. Onec component of the lowest
order nonlinear response, at zero frequency, is determined. Chapter IV
contains the treatment of the other component of the lowest order non-

linear response, at twice the frequency of the external excitation.

1.1 Statement of the Problem

We consider the steady-state excitation of longitudinal waves in
an infinite, uniform expanse of plasma composed of electrons and singly
charged ions. The plasma considered is sufficiently hot and rarefied
that the effects of close interactions between particles are negligible
relative to the effects of collective interactions. Under these condi-
tions the plasma may be described by the Vlasov or correlationless
kinetic equation, which determines the evolution of the one-body distri-
bution functions of ions and electrons.1

The source of excitation is a pair of idealized parallel plane
grids which, in the steady state, establishes a one-dimensional, time-
harmonic potential in the plasma; the grids are assumed not to intercept
any particles of the plasma. The frequency of excitation is below the
ion plasma frequency; the response accordingly involves both electron
and ion dynamics. The response is damped with increasing distance from

the grids. This behavior is the spatial analogue of the Landau damping

in time of an initial perturbation in species distribution functions



predicted from the Vlasov equation.2

The steady-gtate response to small amplitude grid excitation*
described by the linearized Vlasov equation may be determined by numer-
ical evaluation of a Fourier inversion integral. This evaluation has
been performed by folding the primitive Fourier inversion contour to
~ obtain a branch-cut integral along the positive real axis and by
numerical integration along the deformed contour.4 An alternative
method of evaluating the integral, which possesses advantages over the
method described, is presented in this dissertation, below. The new
method is used to study the effect of variable distance between the
grids; prior calculations consider only the dipole limit, in which
the distance between grids is allowed to go to zero while the product
of distance and amplitude of charge density on either grid remains
finite.

The weakly nonlinear steady-state response to grid excitation is
studied by a perturbation expansion of the Vlasov equation involving a
smallness parameter proportional to the amplitude of grid excitation.
The lowest order nonlinear response, which consists of components of
zero frequency and twice the applied frequency, is considered. The
problem is rendered tractable by approximating the potential in the
linearized theory, which appears quadratically in the driving term of
the equations determining nonlinear quantities of lowest order, by an
exponentially damped term. This term is the dominant component of the

linear response over a large range of the spatial variable. The method

* Excitation of these waves was achieved by Wong, D'Angelo, and
Motley.3



developed for evaluation of integrals in the linearized theory is
applied with appropriate modifications to the Fourier inversion inte-

grals which appear in the nonlinear theory.

1.2 Vlasov Equation

As a plasma becomes hotter and more rarefied, close interactions
between particles become less important relative to long range collec-
tive interactions. In the limit in which close interactions may be
neglected the Vlasov or correlationless kinetic equation is obtained.
When the interactions between particles are Coulomb interactions, the

Vlasov equation is given by the set1

(%tw'gg) f—;(x,y)t) —%% @(’-‘ t) E%Z F;Q(,y)t) =0 (.2.1)

2_.9 - CKfL) &Nodi
_32“9—._&@(&)&“%'*‘2%‘]&(5,1/,6&%{ . (1.2.2)

For the two-species plasma considered, o =i, e, for ions and
electrons, respectively; LI is the mean number density of species
a (meters-s) . The function Fa(g,!,t) is the one-body distribution
function of species a . The quantity nana(zjxjt)déi d%x is the
mean number of particles of species o in the six-dimensional phase
space volume element, d%ildél , at x,v at time t . The external

charge density which is the source of the external electric field is

pe(i,t) . The quantity ¢(x,t) is the Vlasov or self-consistent



potential. Its sources are the external charge density and the plasma
particles.
In order to linearize the Vlasov equation we resolve the species

distribution functions into two terms,

Fe(x, v ) = {5, (v) +f« (&,yv‘)) (1.2.3)

in which foa(!) describes a uniform, time-independent state of the
plasma and fa(ial't) is a small perturbation thereto. The velocity

integral of foa(!) is normalized to unity. Since there is strict

charge neutrality in the unperturbed state, the species charges and

mean number densities satisfy the relation

ZQ«”M: 0. (1.2.4)
o

The Vlasov potential is likewise expanded into two terms,

P(xt)=0+ bxt) . (1.2.5)

In the unperturbed state described above, ¢ is a constant which we
set equal to zero. Since f&(it!,t) is small relative to foa(!) s
the term in the Vlasov equation involving the product ¢f& may be

neglected, giving for the linearized Vlasov equation the set

(-g— gz) (x, ¥, t) % TGkt xwﬂoa(z\:o (1.2.6)




S Pat)= &(ﬂ“{—‘#@ feetdy . a2

X 9x

1.3 Laplace-Fourier Transforms in Linearized Theory

In the remaining two sections of this chapter we develop a widely

used method for the treatment of the linearized Vlasov equation. In

the manner of Landau2 the set of equations is Fourier transformed in
space and Laplace transformed in time. Functions of a complex variable
defined by velocity integrals which result are analytically continued
throughout the plane of their argument. The Laplace-Fourier transform
of the perturbation potential in the plasma is expressed in terms of
the transform of the external charge density and of the dielectric
functions which embody the response of the plasma'in the linearized
theory. The Fourier inversion integrals for the steady-state potential
are exhibited.

The Fourier transform pair for the potential is

( Gk .t) = ”A% ciBx G &,t) (1.3.1)
\

@(E,’L): J%T_gﬁe ig'-&d)(lglt) ) (1.3.2)

A similar pair exists for fQQE{!Jt) and fa(E{!,t) . Taking the

Fourier transform of the linearized Vlasov equation and assuming that




perturbed quantities go to zero as |x| approaches infinity, we

obtain

(%;ﬂ&-z)&( vt)— 5;49(“ ES- (v)=0 (1.3.3)

Rad)(k t)= Rk t)'l“zwﬁ: (kv t)43y : (1.3.4)

The Laplace transform pair for the potential is

oo
,

[ |
Cb(?i,u)) = |dt ewt ¢k t) (1.3.5)

Jo
oo+

(b(g‘t);: d"" Lwt(‘) w) . (1.3.6)
\

uoo+1.7{‘

A similar pair exists for fagkhx,t) and fu(gjxjw) . The transforms
exist for y = Im{w} > Y, o where Im{w} = Yo lies above all singular-
ities of the transforms. The inversion contour specified above is

denoted by L . The Laplace-Fourier transformed Vlasov equation is

the set . .
i(&g—w}&(kmw)—%cb(g W) ik ﬁ“(v =f(kyt=0) a.3.n

R T e (T e




The quantity fa(Eal't = 0) 1is the Fourier transform of the
initial perturbation to the distribution function of species a . The
unperturbed species distribution functions which we consider are

Maxwellian with no drift velocity,

-—V'?'/CL%
1 (¥)= = | (1.3.9)
o (VT ay)3
2 2 2 2 . .
where v = v ¢ vy *v, and a, 1is the thermal speed of species

a . We note that the velocity integral of this distribution function
is properly normalized to unity. A plasma whose unperturbed state is
described by these distribution functions is stable: initial perturba-
tions to the distribution functions are damped in time.l We may as

well assume, therefore, that there are no initial perturbations to the

distribution functions; hence, we put fu(Et!,t 0) equal to zero.

We consider excitation of the plasma by an idealized pair of
grids which produces an external charge density with a spatial varia-
tion only in the x-direction: pe(i,t) = pe(x,t) . Taking the Laplace-

Fourier transform of this charge density in accordance with Equations

(1) and (5), we have

ﬁg(‘f W) =j3e<‘?x,w)[awg(?y)][57f g(ﬁs)] . (1.3.10)

The external field produced by this charge density affects only the
x-component of the velocity of a particle. Any Fourier component of

a perturbation in the plasma which is not strictly in the x-direction




is uncoupled from the external excitation and is not considered here.

Therefore fa(EJan) and ¢(k,w) have the same functional dependence
on k as pe(ﬁgw) ; furthermore, we have k-v = kxvx and ke (3/3v) =
kx(alavx) . We integrate over velocity components perpendicular to the

x-direction, which appear only parametrically. We obtain for the

one-dimensional Vlasov equation the set

z’kx(vx—w/kx)&(kx‘vx) %Cb(k,‘)q) /Rxa -ﬁ (V,J" (1.3.11) ‘

R g/)(k Gi" +Z o(n()q (h VK»LLMV,() (1.3.12)

— 00
in which foa(vx) is the one-dimensional Maxwellian distribution

2, 2
-v_"/a
function, e x o a / W/t aa) . Henceforth we suppress the x-subscripts

in Equations (11) and (12).
The Laplace-Fourier transform of the potential in the plasma is
obtained from Equations (11) and (12) by eliminating fa(k,v,w) . We

have

®
f’é(k w) (1.3.13)

R 4 () ov
fzok{ I ¢§:j"—'%§ -————637Er—c§{}

Gk w) =

in which mpa (q noa/eomu) is the plasma frequency of species a .



We shall need for the inversion of this transform the analytic contin-
uation of the functions defined by the velocity integrals of Equation
(13) into the entire plane of the argument Ca = w/kaa . With thisv
analytic continuation the quantity in square brackets is the dielectric
function of the plasma and is denoted by K(k,w)

The Laplace-Fourier inversion of ¢(k,w) is

(1.3.14)

‘ 1cut clk iR x fe(k’w)
Pixit) = o 2T Kk

It was noted above that an unperturbed plasma described by Maxwellian
distribution functions with no drift velocity is stable against the
growth in time of initial perturbations. This conclusion is derived
from the fact that for real k there are no zeros of the dielectric
function in the upper half w plane or on the real w axis. In the
present problem, therefore, a steady state exists in which the temporal
behavior of the plasma is determined by the polés of pe(k,w) in the
w plane, We assume that the external charge density produced by the

pair of grids is of the form

Pe(X,t) :ﬁe(x) coswt  (t20). (1.3.15)

Accordingly the steady-state potential in the plasma is given by

sl (R)e tkx olut| oo(k tkx
q)(x,t): Eﬂeﬁzal«((’?wfk+ S ISSKG? dkl  «.3.16)

10



The second term is the complex conjugate of the first. The potential

is also given by twice the real part of the first term.

1.4 Analytic Continuation of Functions Defined by Velocity Integrals

The analytic continuation of the function of the complex variable

8y = w/kaa defined by the velocity integral

dg (1.4.1)

S (/v el d g
(v w/R) Qano( (s - Gy)

is determined in the manner of Landau.2 We consider the function

Z(Ca) ,>which is defined by the integral

- 1.4.2
Z(5.) f{_j(s )s (1.4.2)

when w and k are on the primitive inversion contours, L and the
real axis in the k plane, respectively. If k 1is positive the
integral defines a function of Cu which is reguiar and analytic in
the upper half plane. If k is negative the integral defines a func-
tion which is regular and analytic in the lower half plane. Two func-
tions of Ca are thus defined; the real axis of the ca plane is a
branch-cut of the functions.

These‘matters are clarified by considering a simpler integral

along the real axis of the s plane between s = -c and s =c¢ ,

11



12

Cc
d - }
/\(g): (—s—:-s"‘g*s'—:lO% gg*—cc" ) (1.4.‘3)
¢

which defines a regular analytic function of the complex variable ¢
provided that § does not lie on the path of integration. The func-
tion A(Z) has logarithmic branch points at ¢ = #c , which must be
joined by a branch-cut along the real axis of the { plane. See
Figure 1. By considering the closed contour surrounding the branch-cut

shown in the figure, we conclude that

ari (Uxl<c)

/\+(X) "/\_(X) = (1.4.4)

o (xi>c¢)

where A*(x) is the limiting value of A(Z) when § approaches the
branch-cut from above and A-(x) is the limiting value when § ap-
proaches the branch-cut from below. The integral of Equation (2) may
be considered the limit, as |c| + » , of a corresponding integral over
finite limits #2c . The presence of the factor e”® does not affect
the character of the branch-cut at the limits of integration.

The analytic continuation of the functions defined by Equation (2)
is obtained by deforming the contour of integration to avoid the
singularity at s = Ca . Explicitly the two functions, as analytically

continued, are
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Co

' _c2
’ﬁ—.'%‘“‘:_()ds (Im{&}%@) (1.4.5)

o _c2
Zt(Cq):J W(:;J:,j_-\[‘“'l‘ -z ém{gq}=()) (1.4.6)

m(:sza)dsia\[_'l_e 2 (M{Su}§0).(1.4.7)

. —0O

The plus function, Z+(Ca) , is the plasma dispersion function treated
by Fried and Conte.S
Corresponding to the plus and minus functions of Equations (5) -

(7) are the two dielectric functions

A
Ki(k,w) = (—; %%5 Z:L(%) . (1.4.8)

Accordingly Equation (1.3.16) may be rewritten by bisecting the primi-
tive contour of integration into positive and negative parts and by
indicating the appropriate dielectric function on each part. The

result is

o
_L(aot l fe(k) tRx ki ‘ E(k\eth

dki+c.c. (1.4.
(b(Xt) E Pr€, H:KG?%) LJWfoI K_‘(kwo) TOC (1.4.9)

14
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An infinite integral involving K without subscripts will be used
frequently below to denote the situation described by Equation (9).

We can determine the relation between the integration contour in
the k plane and the mapping onto the k plane of the branch-cut in
the o plane by considering the velocity integrals in the dielectric
functions to have finite limits of integration. For a particular value
of w on the primitive Laplace inversion contour L , viz, w-= w, +
iwi , which we choose for definiteness to have a positive real part,
the mapping of the branch-cut onto the k plane, k = (wr/aaca) +
i(mi/aaca) , is shown in Figure 2. As the limits of integration
approach #» the branch points approach the origin on opposite sides
of the contour of integration. As w approaches w, the mapping of

the branch-cut coincides with the real axis of the k plane; the

orientation of the contour of integration relative to the branch-cut

is shown in Figure 3.
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I1. RESPONSE TO LOW FREQUENCY GRID EXCITATION

IN LINEARIZED THEORY

The character of grid excitation considered is now specified and
the numerical evaluation of the Fourier inversion integral of Equation
(1.4.9) is carried out. We consider the driving frequency, w, » to
be below the ion plasma frequency, wpi , or, at most, comparable in
magnitude with it.* Both electron and ion motions are excited in this
frequency range. The response near the grids in these circumstances is
often referred to as an ion acoustic wave.3’4 We consider two cases.
In one case there is a finite separation between the two idealized
parallel plane grids. In the other‘case the dipole limit for the pair
of grids is assumed.

In Section 1 the fundamental integrals for the two cases are

formulated as branch-cut integrals along the positive realexis—in—the ——

k plane. Section 2 describes the transformation of variable of inte-
gration from k to C = wo/kai and.the separation of the integrand
into two parts, one principally responsible for the ion wave which is
dominant near the grid, and the other for the electron wave which is
dominant at large distances from the grid. In Section 3 the integration
contour of the resulting ion integral is deformed onto the path of
steepest descents through an appropriate saddle point; except at very
small distances from the grid the deformation results in a residue

contribution which is much larger than the integral along the path of

¢ To simplify the calculation we later make the assumption that
wo/wpi << 1, which permits a simplification that leads to negligible

errors 4 for w Jw . < .3,
o pi

-~

18



steepest descents. Section 4 contains an analysis of the advantages
of the present method over that of Gould.4 This provides guidance in
choosing a deformed contour for the electron integral, which is de-
scribed in Section 5. Section 6 describes the computation of the

integrals and presents the numerical results.

2.1 Fundamental Integrals for Grid Excitation: Dipole Limit and

Finite Separation Cases

The spatial behavior of the external charge density produced by
the idealized pair of grids is pe(x) = oo[d(x—xo/z) - 6(x+xo/2)]
which o, is the amplitude of the surface charge density on either
grid and X, is the separation between the grids. In the dipole limit,
. d
x, o, 0,X, = constant, it becomes pe( )(x) = -coxo(d/dx) S (x)

The corresponding Fourier transforms are pe(k) = o(e'lkxol2 - elkxo/z)

19

- (d .
and—p ( )(k‘ - 1“'03(0:\ ,Trespectively.

It is convenient to express Equation (1.4.9) as ¢(x,t) =

[e -1ugt /2] ¢(x) + c.c. , in which we have

oo

° ikx i ky
— 0'5 o [ e Em(k o/z ( e™" Sln(‘()(o/:..)_]
¢(X) EJTXEO L k K.(k (,L)OL (anj&) _} RK+ k u)o (k)’o/ﬂ)—rnz (2-1-1)

We are considering a two-component plasma, for which

K:t(k,(.do) ;Z‘L Zt( ) EoE Zi(kat) .' (2.1.2)

The only singularity of the integrand of the first integral in




20

Equation (2) in the upper half k plane is a simple pole at

D . We consider positive

values of x . (The integral is an odd function of x .) For points

k = 21/2 i[(wpe/ae) v w,y/ap) 212 _

outside the grids, x > xo/Z » we deform the contour of integration

of the first integr#l in Equation (1) in the upper half plane so that
it runs from + e« to O , as shown in Figure 4.* The residue contri-
bution from the pole at k = ikD is much more heavily damped in space
than the branch-cut integral4 and is therefore neglected. The restric-
tion to values of k outside the grids assures that the integrand

vanishes at infinity when the folding is carried out as described

here.** We now have

Oka .
; SoXo e Sm(kxo/Z)_’
G )=- awéook (fexa/a)_gm(kub) K_(mo ke @

In the dipole limit this becomes

OOka | -
e |
q)( d‘neo R Kk wo) K_(k Wo) k. @19

There is a simple pole of the integrand of Equation (1) at k = 0 .,

This contributes to the potential a constant, different on either side

¢ In Figure 4 are shown also the zeros of K, . The zero of
K, indicated by k; is particularly important in that, at distances
neither too close to, nor too far from, the grid, the response is
closely approximated by an exponentially damped wave with this complex
wave number,

** Determination of the potential for points 0 < x < x°/2 is
discussed below. '
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of the grid, which may be neglected. It is shown below [see Equation
(2.2.6)] that the difference (K_ - K+) approaches zero exponentially
as k approaches zero. The integrals ¢(x) and ¢1(x) of Equations
(3) and (4), therefore, do not exhibit a contribution from this pole.

The integral for ¢(x) can be expressed as the difference

D0 =X [ fernle) ~peno)| @

where

mikx
— 5X | E ! R d .1,
P ==2re| Kok Kk @) R @-1.9)
(6

is the fundamental integral for finite grid separation.

For points inside the grid pair, 0 < x < x°/2 , sin(kxo/Z)

must be replaced by its exponential representation before the primitive

contour is folded. The contour of the fundamental integral with
argument (x + xo/Z) is folded in the usual manner; the positive half
of the primitive contour of the fundamental integral with argument

(x - xo/Z) is folded in the lower half plane onto the negative half
of the real k axis. Introducing the fransformation k - -k and
using the identity ft(-k,wo) = K;(k,wo) we conclude that the

potential ¢(x) may be obtained for positive X inside and outside

the grid pair by the following extension of Equation (5):

q)(x) - X;'[CPZ(XMO/Z) - cba(lx—xo/zt)] . (2.1.7)

In the following sections the development is carried out with ref-

erence to ¢,(x). Numerical calculations of both ¢,(X) and ¢,(x) are
1+ 1 2
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performed.

2.2 Transformation of Integration Variable and Separation Into Two

Integrals

Except for the iﬂclusion of finite grid separation, the formula-
tion follows Gould4 up to this point. We now diverge from his method;
a comparison of the two methods will be made below.

In order to proéeed further we give to x a small positive
imaginary part, i.e., x = lxleid , with 6 > 0 . This step is neces-
sary to the transformation of variable of integration now to be intro-
duced. When deformed contours of integration are introduced below, §
may be set equal to zero.

We introduce the following dimensionless variables, which are

appropriate to the excitation at the frequencies which we consider:

Wo . — Qo = e

= Lc = & = > (2.2.1)
= aLX’ wpiy T G-oxo(b‘)—r lo

The species kinetic temperatures are Ta = maaaz/ZK , where K 1is the
Boltzmann constant. We introduce also the mass ratio, u = me/mi .
Introducing these variables and transforming the variable of integra-

tion from k to (¢ = wO/kai , We obtain

& _ i [e [ ! B
ERCIN NG P%K_@fz)

in which
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PREH=F-HZ00T Z45T9)) . e

We observe that the integral consists of the sum of two integrals on
opposite sides of the branch-cut in the 7 plane. See Figure 5.

The reason for giving x a small positive imaginary part is now
apparent. The factor eiz/; has an essential singularity at ¢ =
The imaginary part of x causes eiz/c to be exponentially damped as
§ »+ 0, thus assuring the existence of the integral. If (¢ approaches
the origin coming from the lower half plane as in the deformed contours
to be chosen, 12/t s exponentially damped as |g| » 0 for real z ,

and § may be set equal to zero.

The functions Z () have integral representations5

20

Z__t(é) bk\fl«r‘ E, e AtJ (2.2.4)

which are valid throughout the finite ¢ plane. These representations,

or Equations (1.4.5) - (1.4.7), give
2

Z+(5) *Z_(é’) = RJT'1 ég (2.2.5)

from which there follows

K_(ﬁ?') K (ch § (egitéla_lxs/ze_—ﬁkga) _ (2.2.6)

With this relation we obtain



25

G 34NoId

ANV |2 NI
IYHOILNI IVLNIANVANNS 40 ¥NOLNOD IVILINI




26

@ Li’/é ge y L?./S g e
2 ; dg (2.2.7)

R K(gfz)][ﬁqﬁz)] i PR e ARG

~

in which we have taken the equal temperature case, T = 1 , to which

our attention will be confined. The difference (K_ - K+) approaches
zero exponentially as k + 0 (L » «) ,

The exponential attenuation of eiz/C as |g| + 0, assured now
by & > 0 and later by the approach of the deformed contour to g = 0

coming from the lower half plane, permits us to consider the case

fz << 1 , to which we shall limit our attention. We denote

Lin[£5K, (2,£9)] by

£°20

FK: Qa[zi(f +ZiQL‘/Z ] (2.2.8)

and observe that in this limit <I>1/f2 is independent of £2 . The

exponential attenuation of /% s |g] + 0 discussed above takes
care of the difficulty caused by the vanishing of f2K+(0)A.
2 2 -
The factors e © and e M place upper limits on the ranges

of |C| which contribute substantially to the two integrals, namely
Izl € 0(1) and |z| s O(u-l/z) , respectively. Recalling the defini-
tion of [ and the relation ai/ae = ul/z (for T =1) , we see

that the first (second) integral has substantial contributions from

values of the phase velocity mo/k which are not greater in order of
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magnitude than the ion (electron) thermal velocity. It is appropriate,
therefore, to refer to the first (second) integral as the ion (electron)

integral.

2.3 Path of Steepest Descents for Ion Integral

We now consider a deformed contour in the £ plane which coincides
with the path of steepest descents passing through an appropriate
saddle point of the exponent in £he.function eiz/;-;z . This contour
will be used for the numerical evaluation of the ion integral. In order
to avoid confusion concerning deformation of the upper contour of
Figure 5 through the branch-cut, we shall first deform the contour of
the total integral, Equation (2.2.2), onto the path of steepest descents
for the ion integral. Subsequently we shall deform the contour of

integration of the electron integral further to a contour appropriate

to it.
An integral whose integrand determines the path of steepest des-

cents sought is

w .
T=| X©) e %4z, @.3.1)
o)

Making a transformation of the variable of integration to w = 2-1/35 ,

and considering integration over an appropriate deformed contour C ,

there results6

2/3 ( )
I: z'/s X(:E'bW) eE P clw (2.3.2)
c _



in which ¢(w) = (i/w) - w2 . Determination of the saddle points by

the condition ¢'(w) = 0 yields

-3 ~To —1f3 T /3 =T
wosP 57 Wy =R 3] \/83Wa=3 g I./G. 2.5.5)

The proper saddle point for this integral is L ¢(wo) =

e21r1/3

(3/22/3) . fhe path of steepest descents is determined by the

conformal transformation

lt R ZR/3 [CP(Wo) _ (P(W)] (2‘.3.4)
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in which t is real and varies between - @ and + « . The integral
becomes
| oo
R/3
a3 EPWe) | 2Ty
I.—.g/ae P e Il%f’w(tﬂcij%dt-{—@ (2.3.5)
=0

in which Q denotes the contribution to I from the residues of any
poles swept in the g plane between the positive real axis and the
mapping of the path of steepest descents onto the Z plane. The
numerical evaluation of the ion integral is carried out over a range
of t suffiéient to ensure negligible error. The presence of the
factor e-tz permits limitation of the range of numerical integration
to -3.1 <t < 3.1 for the achievement of satisfactory accuracy. The
inversion of the conformal transformation, i.e., the determination of
w(t) , is effected by an iterative technique described in Appendix A.

| The character of the path of steepest descents in the [ plane

1/3w)

(t =z is shown in Figure 6. The saddle point is located at
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g = 21/3w° . The depiction of the contour as a double solid-dashed
line reflects the'fact that the integral of Equation (2.2.2) is the
sum of two integrals on opposite sides of the branch-cut in the ¢
plane. The contour of integration of the integral containing K, »
having crossed the branch-cut, lies on a Riemann sheet different from
that on which Z+(c) is defined as an integral over a real contour
of integration; Zl(c) and Zl(ul/zc) denote analytically continued
functions for contours lying in the lower half  plane. Having
deformed the confour of integration so that it approaches t = 0 coming
from the lower half plane, it is possible to set & = 0 , as discussed
above.

The first few zeros of [f2K+(§)] are indicated in Figure 6. The

transformation of variable of integration from k to ¢ has cast the

infinite set of zeros indicated in Figure 4 out toward large || . The

tirst zero, kl , which approximates closely the exponential damping
over a considerable range of z , now appears closest to the origin,
at ¢, = 1.45 - 0.60i . As z increases, the path of steepest des-
cents'dips farther into the lower half § plane. At z = 3.8 , the
contour sweeps past i, and the cpntribution of the residue from the
pole must be included for larger values of 2z . That contribution to

2
¢1/f

is [elz/Cl/{cl[fzK;(cl)]} ] . As z increases, the path of
steepest descents sweeps farther into the lower half % plane, but it
does not reach the next pole, cz , in the range of =z which we

consider (z < 60) .
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2.4 Advantages of Present Method

We now discuss the advantages of the method adopted to this point
for the evaluation of Ql/f2 . The considerations introduced will
provide guidance concerning the choice of a contour of integration
for the electron integral, which involves additional complexities.

The method of Gould4 for the evaluation of the integral of Equa-
tion (2.1.4) made use of the relation K_(k,wo) = K+(-k,w°) and the
fact that the real and imaginary parts of Z;(f) are, respectively,

-~

even and odd functions of the (real) argument g to give (for T =1

and f2 << 1)

co

& il | e %
e ”‘I LZ+(|/Q)+Z+ (%) k

(J
in which n = ka, /w . This integral was evaluated numerically on

(2.4.1)

the positive real n axis,

The appearance of a separate residue contribution which gives the
dominant behavior of the response over a considerable range of 1z is
one advantage of the present method over that just described. A second
advantage is that the use of the path of steepest descents for the ion
integral involves a small [0(27)] phase change of the integrand over
the range of the contour required in the numerical integration. By
contrast, the cut-off of the numerical integration of Equation (1) for
large n is determined by the coefficient of einz , which decreases
slowly with increasing n . The securing of this advantage for the

present method depends on choosing a deformed contour for the electron

integral which involves a small phase change of the integrand over



the range of the numerical integration. Such a contour is described
below. A third advantage of the present method is the separation into
two integrals with distinct ranges of variable of integrations,

lg] ~0(1) and |g] ~ O(u-l/z) , which are responsible, respectiveiy,

for the ion and electron waves.* The integrands of the ion and elec-

-Cz

tron integrals differ only in the presence of the factors e and

2
ullze-uc’ , respectively. In the range ICI < 0(1) , the integrand of
the electron integral is negligible compared to that of the ion

integral.

2.5 Deformed Contour for Electron Integral

The path of steepest descents passing through the appropriate

2
saddle point of the exponent in e12/8-ug

described in connection with the ion integral, with the replacements

is obtainable by the method

32

z 5y =%z, T E = u’%C . The forn of integral considered mow
is
N (2[5 — G-
F = W(g)e" e (2.5.1)
o
. which may be written as
F= »’/Zf wEep)e’ e,

® See Figure 8, The electron integral makes no substantial
contribution to the response for values of 2z less than about 20.
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-1/3

In accordance with our earlier procedure we define w = y g€ . The

integral is transformed into

2/3

/2 13 12 |3 <VV>
EZ /2 1 1*/'(fb 2 V/)GE C¥) clvv

(2.5.3)

where ¢(w) , Wy and ¢(wo) are as before. The conformal transfor-

mation for the path of steepest descents is of the form of Equation

(2.3.4), with 2z »y ., The path of steepest descents in the { plane
P P )

is given by ¢ = w2 =y 2 3y -yt

u-1/321/3w

w(t) ; ¢_=

[y o

o

The path of steepest descents sweeps much farther into the lower
half ¢ plane than the path of steepest descents for the ion integral.

The distance of the saddle point for given z from the origin is

greater than in the case of the ion integral by a factor of u'l/s .

/12

We perform calculations for cesium; in that case p 'Y e 62.4 . An
unacceptably large number of residue contributions from the zeros of
[f2K+(c)] must be included in a deformation to this contour from the
path of steepest descents for the ion integral first adopted for both
integrals. That portion of the path of steepest descents now being
considered corresponding to 0 €t < + ® may be used. The phase change
of the integrand of the electron integral along it is ~ 0(2w) .
Furthermore there are no zeros of [f2K+(c)] ~between it and the
positive real axis.7

The completion of the contour for the electron integral by a

—1/311/3w )

straight line segment between the origin and ;o(=u o

requires the inclusion of the residue contribution of 4] alone. See



34

Figure 7. Furthermore it well satisfies the criterion articulated in
the preceding section that the phase change of the integrand is accept-
ably small. The argument of T on this contour, -w/6 , gives sub-
stantial exponential damping as |g] + 0 . We have iz/g =
(;/lcl)(-O.S + .866 i) . As ¥ moves along the straight line portion
of the contour from a region where 2z/|g| << 1 toward the origin, the

iz/g

phase of e changes. There is, however, an associated change in
the real part of the argument 1iz/f7 toward larger negative values,
with the result that the phase of elz/c changes by no more than an
amount of order 2w before the integrand becomes negligibly small.
As noted above, the fact that the ion and electron integrals
_CZ 1/2 - 2
differ only in the factors e and u ‘e HZ , respectively, makes
it possible, independent of 2z , to begin the numerical integration

of the electron integral at a value of [ sufficiently large in

absolute value (|¢] = 2.5) that the phase change of the integral is
further reduced. An additional consequence of this is that the
functions Zi(c) may be approximated by their asymptotic expansions

in the electron integral.

2.6 Numerical Results

The fundamental integrals for the dipole limit and for the finite
grid separation case were numerically integrated on the TRW Systems
On-Line Computer.8 The case of a cesium plasma, for which
B = 4.12775 X 10°% , was treated with T =1 and £° << 1. All

numerical inputs were taken rounded to six figures. A high accuracy

integration routine was used. It is estimated that the results are
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-accurate to three or possibly four places. Calculations of ¢>1/f2
agree with the results of Gould.4 See Figure 8. For the finite grid
separation case, with the relations ¢ = - eo¢/ooxo and ¢2 =

- o X we have
€o¢2/ oo’

B2 [ erza -8 2z 2.6

in which z, = moxo/Zai , and

a
I i7/5 l

o
E“fff’ R0 TIRIGE)

J%%%::: JEJ. (2.6.2)

This quantity was likewise calculated. See Table 1. For z, = 4 ,
arg(¢/f2) and Ln(lél/fz) are shown in Figure 8 for points outside
the grids. This is typical of the results for other values of z, -

The ion wave portion of the response, nearer the grid, is excited at a

36

lower amplitude as z, increases; there is an increase in the contri-
bution of the branch-cut integral relative to the residue contribution,
The electron wave at large distances is unaffected. The character of
the response in the interference region, at intermediate distance, is
affected. The selective modification of the response near the grid
might have been expected, since the factor [sin(kx /2)/(kx /2)]
reduces the contribution from large values of |k| ( 2 2/x)) . The
dominance of the residue contribution for a range of 2z is responsible
for the roughly parallel shift of 2n([¢|/f2) relative to 2n(|¢1|/f2).
The numerical results obtaiﬁed for the case of finite separation
between the grids demonstrate that the nature of the response is

determined primarily by the characteristics of the plasma, as



embodied in the dielectric function, rather than by spatial character-

istics of the excitation.
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Table 1. Fundamental Integral for Finite Separation
2 Re{®, (2)/£) In{0, (2)/£°)
1.0 .378739 x 10”1 -.293679 x 1072
1.5 .276329 .914867

2.0 .177838 149934 x 1071
2.5 .904137 x 1072 .167672

3.0 .187046 .157897

3.5 -.349902 .130614

4.0 -.689171 .949861 x 102
4.5 -.879190 .555833

5.0 -.924791 .180037

5.5 -.857435 -.143071

6.0 -.711236 -.392967

6.5 -.519392 -.561306

7.0 -.311467 - .649649

7.5 -.111600 -.666919

8.0 624318 x 10~ -. 626820

8.5 .199364 x 10”2 -.545461

9.0 - ,293986 -.439280

9.5 .346247 -.323451
10.0 .360102 -.210754
10.5 .342246 -.110919
11.0 .300894 -.303954 x 107>
11.5 . 244682 .275234
12.0 .181785 .623190
12.5 .119264 .756945
13.0 .626576 x 107> .709402
13.5 .158075 .522945
14.0 -.191301 .243558
14.5 -.415192 -.841016 x 107
15.0 -.519780 -.420444 x 10”3
16.5 -.520570 -.733430
16.0 -.439015 -.999831
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2 Re{0, (2)/£") In{s,(2)/£7)
16.5 -.299339 -.120544 x 10”2
17.0 -.125786 -.137140
17.5 .595241 x 10°% -.141798
18.0 .238124 x 107> -.143292
18.5 .396043 -.139968
19.0 .524086 -.133072
19.5 .617623 -.123898
20.0 .676016 -.113661
20.5 .701825 -.103410
21.0 .699891 -.939721 x 10~
21.5 .676419 -.859238
22.0 .638143 -.795977
22.5 .591613 -.751052
23.0 .542667 -.723742
23.5 .496068 -.711962
24.0 .455323 -.712739
24.5 .422649 -.722667
25.0 .399061 -.738307
25.5 .384546 -.756492
26.0 .378294 -.774547
26.5 .378943 -.790421
27.0 .384822 -.802726
27.5 .394173 -.810714
28.0 .405321 -.814203
28.5 .416809 -.813463
29.0 .427479 -.809095
29.5 .436510 -.801901
30.0 .443414 -.792766
30.5 .448011 -.782561
31.0 .450372 -.772064
31.5 .450758 -.761915
32.0 .449557 -.752582
32.5 .447214 _.744362
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z Re{¢2(z)/f2} Im{¢2(z)/f2}
33.0 .444186 -.737388
33.5 . 440890 -.731653
34.0 .437678 -.727042
34.5 ,434819 -.723367
35.0 .432491 -.720397
35.5 .430783 -.717893
36.0 .429710 -.715625
36.5 .429225 -.713398
37.0 .429235 -.711055
37.5 .429625 -.708490
38.0 .430265 -.705641
38.5 .431032 -.702491
39.0 .431816 -.699054
39.5 .432527 -.695374
40.0 .433102 -.691510
40.5 .433499 -.687527
41.0 .433703 - .683495
41.5 .433717 -.679474
42.0 .433561 -.675514
42.5 .433264 -.671656
43.0 .432861 -.667925
43.5 .432389 -.664333
44.0 .431883 -.660882
44.5 .431373 - .657565
45.0 .430884 -.654366
45.5 .430432 -.651269
46.0 .430027 -.648253
46.5 .429674 - .645300
47.0 .429371 -.642391
47.5 .429114 -.639512
48,0 .428895 - .636652
48.5 .428703 -.633804
49.0 .428531 -.630963



49.5
50.0
50.5
' 51.0
51.5
52.0
52.5
53.0
53.5
54.0
54.5
55.0
55.5
56.0
56.5
57.0
57.5
58.0
58.5
59.0
59.5
60.0
60.5
61.0
61.5

Re{¢2(z)/f2}

.428369
.428209
.428046
.427876
.427696
.427505
.427305
.427079
.426864
.426649
.426434
.426219
.426004
.425789
.425575
.425360
.425146
.424931
.424717
.424503
.424288
.424074
.423860
.423646
.423432

Im{¢2(z)/f2}

-.628127

-.625299

-.622480
-.619674
-.616886
-.614118
-.611375
-.608635
-.605964
-.603319
-.600698
-.598102
-.595529
-.592980
-.590454
-.587950
-.585468
-.583008
-.580569
-.578152
-.575755
-.573378
-.571022
-.568685
-.566367
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I1II. FORMULATION OF RESPONSE: NONLINEAR THEORY

We consider now the weakly nonlinear steady-state response to
grid excitation. That is, we examine the case in which the amplitude
of excitation is such that the perturbations of the species distribu-
tion functions, while still small compared with the unperturbed dis-
tribution functions, introduce nonlinearity into the Vlasov equation
through the term involving the product of the electric field and the
velocity gradient of the distribution function.

In Section 1 a perturbation series expansion of the potential
and of the species distribution functions in the (nonlinear) Vlasov
equation yields a hierarchy of equations associated with a smallness
parameter proportional to the amplitude of grid excitation. In each
order the equations are linear in the perturbation quantities of that
order. In the first order the linearized Vlasov equation is obtained.
In the equations of each order above the first there are driving
terms composed of quadratic combinations of quantities of lower order,
In the second order the steady-state response consists of zero frequen-
cy and double frequency components. In Section 2 the second order
equations are Laplace-Fourier transformed in the manner of Landau.2
The transform of the perturbation potential in second order is
formally inverted; the inversion leads to a double integral over
Fourier transform variables which is further complicated by the
presence of branch-points in the plane of one Fourier transform vari-
able whose position depends on the value of the other Fourier transform

variable. The determination of the double frequency component of the

43
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lowest order nonlinear response thus appears unfeasible without some
simplification. The desired simplification is described in Section 3.
It is effected by approximating the steady-state potential in the linear
theory, which appears quadratically in the driving term in second

order, by the residue contribution which is dominant for values of the
spatial variable neither too close to, nor too far from, the grid.

The species distribution functions in the linear theory are found in
this approximation. By calculating the species number density,

na(x,t), and then "stripping off'" the velocity integration, the defor-
mation of contour of a subsequent velocity integration.around the pole
arising from the species distribution function is determined in advance.
In Section 4 functions of two complex variables defined by velocity
integrals in the lowest order nonlinear response are expressed in terms
of plasma dispersion functions. Section 5 deals with the zero frequency
component of the nonlinear response. It is shown that the zero
frequency component of the nonlinear response is a polarization of the
plasma unaccompanied by any zero frequency species current densities.
These results are obtained independent of the perturbation expansion.
The zero frequency component of the lowest order nonlinear response in

the dominant pole approximation is obtained by residues.

3.1 Perturbation Expansion of Vlasov Equation

Examination of the (nonlinear) Vlasov equation suggests that
steady-state response to time-harmonic grid excitation at frequency w,

involves frequency components w =0 , w Zwo,.... Strong nonlinear-

o’

ity involves substantial contributions from a large number of harmonics
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and a coupled system which is probably difficult, if not impossible, to
treat. Accordinély, a solution is sought by considering a perturbation
expansion in powers of a smallness parameter proportional to the ampli-
tude of the grid excitation.*

The conclusion reached earlier that the problem is one-dimensional

is not changed if the Vlasov equation is nonlinear. Therefore, we

begin with the one-dimensional Vlasov equation for excitation by a

dipole grid

(9 +v9)F(X'V’ o<.f‘3 @(Xt) F(\ ARG (3.1.1)

o0
.._-@fx L,)_--C__’“i_&x)c@wm‘}_‘%ﬁ* Eviidv.  ©.1.2)
)
- 2C

In the absence of excitation, we have Fa(x,v,t) = foa(v)

Table 2 defines an appropriate set of dimensional variables, which

are denoted by Fa , and so on. The dimensionless Vlasov equation is

3 .43 S 3 Faf
o)
-Q:_é L S(Rinost —5“6@,.&, ({/—l d¢ =0 (3.1.4.)
AxET o R = . ‘i X
=20

* This is equivalent to the procedure used by Montgomery and

Gorman? to study nonlinear Landau damping in time.
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in which
— 0o X (%) | (3.1.5)
e Wo

is an appropriate smallness parameter for the expansion of potential
and species distribution functions in perturbation series. The expan-

sions are

Eeoty=L o 000 800+ e

a

@@)%): ’XC/[\),(Q,%) + fa\)&(ﬁ,ﬂ+ a (3.1.7)

By substituting these expansions into Equations (3) and (4), and

equation to zero sepafately the coefficient of A" for n =

- 1,2,3,..., there results a set of pairs of equations. For n = 1,

the linearized Vlasov equation is recovered. For n = 2,3,..., the
equations resulting from the Poisson equation are

0o

2 AN "
O TN )
(e

Introducing the notation

A A A 3 E:BEad'EQ AN E; A
— 9 P .
{5.= (g‘; asz) Aol B3 , 30 Fou 19

the equations obtained from Equation (3) for n = 2 and 3, respectively,

are
A

2 &2 5 A 3 A
= d = . *
C[ Ra~ iy %D« a&¢u @\’}'F\o( (““"B) (3.1.10)




- Table 2,

Dimensionless Variables

F = ai'1 Ea

t = 0)0'-1 ;
v

x = (ai/wo) ;
q, =€ aa (e > 0)
] = (ewoledai) 8
noa = (wO/ai)3 ;oa
o = 8 oy

fo © ai-1 ;oa
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and so on for larger values of n , “This set of pairs of equations
provides a basis for determining the nonlinear steady-state response
of the Vlasov equation to grid excitation for "sufficiently small"
values of A , We consider only the lowest order nonlinear equations,
n=2. The difficulty of treafing these equations is considerable.
The nonlinear equations of lowest order in terms of dimensional vari-

ables are
\

(%E+V%§}S£‘—35Q_S¢@‘£u:_ﬂﬁE@—1cu (3.1.12)

2 |
- 2—)—;&8@ -;:Z x Tow S£,dy (3.1.13)
X

in which E = - 3¢/3x . The potential and the species distribution

functions, correct through second order, are
@(X,t)z O + QXxt) + S (xt) (3.1.14)

Fo< (X;V{‘C) = 'Foo( (V)"[‘"Fo( (Xivi &) + S f’u(xx Y, ';,} . (3.1.15)

The potential and species distribution functions which satisfy the
linearized Vlasov equation are ¢(x,t) and fa(x,v,t) . The lowest
order nonlinear contributions to the potential and the species distri-

bution functions are &¢(x,t) and Gfa(x,v,t) .



3.2 General Formulation of Lowest Order Nonlinear Response
Equations (3.1.12) and (3.1,13) are Laplace-Fourier transformed

in the manner of Landau. In particular, we recall the requirement

that w be given a sufficiently large positive imaginary part to

assure the existence of the Laplace transforms. With the operator

notation
oo (0,0]
wt| | iR -
T:: dt ™ dxetk\< (3.2.1)
O - 0O

there results

-k )Sh - S RS kL = gﬁgoﬂg‘) G5.2.2)

Récb(*\ﬂ)"‘zi—n"“[‘\f (&, /(,u)c[v (3.2.3)

“—0o
The Laplace-Fourier transform of the lowest order nonlinear perturba-

tion to the potential is

i T(E s

" (‘OFA

— JV. (3.2.4)
Z(Ufz,j D‘Foa\(v)/a\/ "‘\/ Iy (V" (*)/Rl‘

(V= /RY | =00

o SES [

The procedure for determining the steady-state behavior of
§¢(x,t) without further approximations is now developed formally.
The difficulty of evaluating the formal result will be abundantly
apparent. The potential and the perturbations to the species distri-
bution functions in the linearized theory are given in terms of their

Laplace-Fourier representations
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—iw't’ (dk \P(l 7

@\X‘_,‘ e Jm K ') (3.2.5)
L_ — OO
and
w -
wt’ dR U . (/)/av
1C Xint!)= « ,L':re ?C}\Tx o o R ¢(k (3.2.6)
Lf -5 B

We are guided by the work of Landau to perform the velocity integration

first., Hence, we define

[ )t')]’av{:o&x’) vt')

0L UJ ' (3.2.7)
G ( (v—avk) 1%

=00
which is given more explicitly by

- o 0c
Qe 2)= oot =it [ g i

o RIS R ) Wﬁ
—b0~00

i

o0

N N
Xrl&<_( }gb( ) (o5 (v uo/ksr‘ o S )_ld (3.2.8)

The velocity integral must be analytically continued throughout the
.complex planes of its two arguments. We denote the resulting functions
of the complex variables w/k and w"/k" by Ia(w,k; w',k"}) . We
now perform the indicated Laplace inversions to obtain the steady-state

behavior of Ga(x',t'- 9

X ) . If



i , i .
¢(R)w) = mfp@)“%) + m¢(k)’w°) (3.2.9)

is the transform whose Laplace-Fourier inversion gives the steady-state

behavior of ¢(x,t) [see Equation (1.3.16)}, the steady-state behavior

of Ga is
" dkdE AEHIX g
G (X t) X\ ‘—(én_—?e %’i(“ L k )

x{zg S BN B AT R k)

2L600-t

Cf)(/? ~wo) ¢(R )—a)o)Ioga)J f‘{;—wa )k”)
+2§:[¢ (K5000) pK!-00) [ (3R~ wor R")

+O(:-wo) BR; we) T W, k; wo k' ):I} (3.2.10)

The Laplace-Fourier transform of this quantity is

_a.i) a‘rod) i "Q ] TR k II
X v _ | —1RX Akc”ﬁ L( +k -
J—w(v ~ oK) dV—-er (27],}_‘ %_( Lk

—00 -0
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X Z{\-—(wfawo)cb@;wo) Cp(k wo (w R, wo k >

T ZL‘; (W i&wo) q)(kl)"w‘) PE-0) [, <®> R}=wo, k“)
-\—i [@Qﬁ ;W) Pk wo) [ (w,R; —wo k")

IR ", _ - " 1)
+ q)(k )—u)o)¢)<k )wa)]:q(w)k ) u)o)k )j)j . (3.2.11)
The contour of integration C is deformed as necessary for the

analytic continuation of functions defined by velocity integrals.

Using the relation

oo T RIAYY A
fe—*(k-k_k )XC‘X'= 2w S (k-R-k") (3.2.12)

- 0o

and performing the integration with respect to k" , we have

(T(%%%%) ’2 yWo k—k)

év w/k) E -’%_V’Kdd

(w Za)

+i @%@cp(k';-mo) Blk-K o) T (0, k=0, R-K')
| 2% .(%Ef;(h wa§¢(h—h,—wo)f(w ky~wo ,R-R')

+ (k- wo) ifJ(k~h';wo)I°§co)h; Wo ,R- h')]} . (3.2.13)



It is not necessary to proceed further to appreciate the diffi-
culty of determining the steady-state behavior of §&¢(x,t) by the
Laplace-Fourier inversion of the analytic continuation of Equation (4)
with the substitution of Equation (13). First, there is a double
integration over Fourier transform variables. Second, the integrand
contains functions of the arguments k' and (k - k') which are
different functions depending upon the sign of each argument on the
primitive inversion contours of the transform variables. The location
of one of these transition points (pairs of branch-points) in the plane
of one transform variable depends upon the value of the other transform
variable. We now describe an approximate method which permits us to

avoid this impasse.

3.3 Dominant Pole Approximation

The steady-state behavior of dJ¢(x,t) may be determined by a
program whose central notion is the approximation of the steady-state
potential in the linearized theory, ¢(x,t) , by the residue contribu-

tion of the pole at § = §., . The steady-state behavior of fa(x,v,t)

1
corresponding to this potential is then determined. We recall that a
velocity integral is to be performed in obtaining 6¢(k,w) and that,
in accordance with the approach of Landau,2 singularities in functions
defined by velocity integrals are to be avoided by deformation of the
‘contour of integration. This imposes the requirement that each
velocity denominator in fa(x,v,t) be scrutinized concerning the

orientation of a subsequent velocity integration contour relative to

the singularity in the complex velocity plane which it produces. This



is achieved conveniently by determining the perturbed species number
densities, which are velocity integrals of the species distribution

functions, and by "stripping off" the velocity integration. The
3¢ of
_ <9
X oV

Then the other operations involved in determining the steady-state

Laplace-Fourier transform of (- is obtained in closed form.
behavior of 6¢(x,t) are performed. A single Fourier inversion inte-
gral is obtained which is of the same general character as that
obtained in the linearized theory.

The dominant pole approximation for the electric field in the

linearized theory is

2 L(kh(!'wot)
2 dkt)=FAe +cc.  (oo<x<w)  (3.3.1)
in which
A_E‘OXO 1Wg ‘ (3.3.2)

T2€s Ay g2 N -
S {: k<+QgJ
This is obtained from the steady-state potential ¢1(x,t) = (e'lwotlz)

x (- Ooxo/eo) ¢1 + c.c. by approximating ¢, of Equation (2.2.2) by

1

the residue contribution obtained when the integration contour is

deformed to the path of steepest descents for the ion integral.

As was stated in the summary description of the dominant pole

approximation above, the steady-state behavior of the species perturba-

tion number densities will now be obtained. The integration with
respect to velocity will then be '"stripped off", note being taken of

the contour of integration in anticipation of the subsequent velocity
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integration to be performed. The explicit form of Equation (3.2.9) is

Go Xo 1 ’ l |
Dlew) = ( 260l -0 kil (e RRGeay - &

Introducing this expression into

£ (evw)= Qe SIM(V)/&V(I)()E ) ) .54

M (v-w/k)

which is obtained from Equation (1.3.11), integrating with respect to
v , analytically continuing the velocity integral, and performing the

Laplace inversion, there results

TWA(XHt) -
.LGaXc L Z _‘_jg]_k e ( R)J _+_
Zéo M RK RK_(Ra0) % JET kb 00) 02— ka

0o

(s ik »
¢ “"" “‘[;Wﬂ Hawmll l(%éiﬂ.“-s-s’

The second term is the complex conjugate of the first, as can be seen

with the aid of the identity

(2.6] =Z+(s")

and the differential equationS

Z:lt(g):”a—g S Zi(g) . | (3.3.7)
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For x> 0 and f2 << 1 , therefore, the dominant pole approximation

is

ilQ,x
=fe e R g Rl e

where ual/z =1 for a=1 and ullz for a = e . Treatment of

the case x < 0 requires use of the identity

Z:::<—§) ZZ;@) (3.3.9)

in relating K and K_ ; this identity is most easily established

from Equations (1.4.5) - (1.4.7). Putting x = - X (X >0) , with
the transformation k = - k¢ , there results

2 —(ogt Go XO
nueXiE)=t (L ek

X[é'; K{’e<+(KTJJa)Z < K.cc) SZT ! Ka)a\)Z /Qo(\) +C.C. (3.3.10)

In the single pole approximation, therefore, for x < 0 and fz <1,

”(le

)= £ Lwtémo Q[fZKf(g:j (aZZ( g} +c.c. (3.3.11)

Combining Equations (8) and (11), and making use of Equations (6) and
(7), we have the dominant pole approximation for the perturbation to

the species number density in the linearized theory,



NeXxt) =

{.%Fgfi B ei(k.bd -wﬂﬂ[e(x) (;:z Z !(F;(/zgl)__ o ('X)ZL—L\ZZ _’(_ p'ol(zglﬂ n

_@}4\_ Bel(h\M [@(X)—-Z Ulo/(zgy) e( )()—ZZ"HZQ*) 5.5.12)

in which 6(x) is the unit step function and

B =—C0X | (3.3.13)

€0 AV
g‘ g K-{-(g(\
The dominant pole approximation for fa(x,v,t) is therefore

-(:a(X,V,t) -

[ %\& L(P lxl—w&)@x\
-F%——B‘ L(k*‘lY‘ J))ﬂa ) a'coa/gv 6(_ ) 9‘004 /a\/ .} ‘ (3.3.14)

31(:0«/;?\/
_9< ) (V+§|G,_)] +

( - Cac)
I*a \— (V 'f'g|xa.~)b

. The + and - subscripts on the velocity denominators give the
proper orientation of a subsequent velocity integration relative to
the associated singularity. In all cases the contour indicated is one
which deviates from the real axis to surround the singularity.

The equations for 6¢(x,t) and Gfa(x,v,t) form a set of linear
partial differential equations driven by the real quantities

(- 3¢/93x) (Bfu/av) which are of the form
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) ~(=
-8 & S(Hx) &g )(x +S (xv) (3.3.15)

Here Sa(')(x,v) = [Sa(+)(x,v)]* and Sa(o)(x,v) is real. The
nonlinear potential d&¢(x,t) is related to (- 8¢/3x)(3fa/3v) by
the Laplace-Fourier inversion of Equation (3.2.4). The Laplace
transform-inversion procedure involved in obtaining the steady state

result is trivial. The operator T induces

F2cut 1

—_— 3.3.16
€ CQJ q:.ElOé) ( )

Considering the steady state, the Laplace inversion reverses the
indicated transformation and produces the substitution w = iZwo

Hence, the final result is of the form

8¢(X.t)=é S(ﬂ(x Ewm S5 ) + SO(x) (3.3.17)

in which the first term is the result of introducing in Equation

(3.2.4) the partial excitation given by

_2 3 _ Jelwet @y
axCp(x‘t)av’Cd(XMt) = e S,( (x) v) . (3.3.18)

-In order to obtain the double frequency response, therefore, it is

sufficient to consider this partial excitation.
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3.4 Relation of Velocity Integrals to Plasma Dispersion Functions

The functions defined by the analytic continuation of
Ia(w,k; w',k") may be expressed in terms of the functions Zi(C) .

For clarity, we repeat the definition

ny | A ’afo,(v)/av—‘
L. @k )= G-/RY V| (v = k'jdv 3.4-1)

Integrating by parts, we have
©o

I __|3fa/ov 3 l
« | (v-wk") 3Vi(v-w/k)

— 00

dv | (3.4.2)

which in turn may be expressed as

oo
:8 GFoo«(V)/Qv ‘ Cl\/ (3.4.3)
« /)| (v—w/R)(V-w/R")
Effecting a separation into partial fractions, we have
oo o
l (wa(V)/&v | 3Fe (v
Ip( Q(Q)/k) (&p—%) Cv _U)U/ky)dv /V "UO‘——/'Q)“" V (3.4.4)

=00 — R0

——

Defining cu = m/kaa and ca" = w"/k"aa and analytically continuing

the integrals, we obtain

Id L 25z (g Z(r" __[‘ (gj f (3.4.5)

The Z' functions are Z' —or Z' , depending upon the sign of k
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or k" on its primitive Fourier inversion contour. Having associated
with each velocity denominator in the dominant pole approximation a
plus or minus subscript, we have determined which of the two functions
z't(ca") is to be chosen in each case. (The arguments Ca" are
constants in the analysis based upon the dominant pole approximation,)

For convenience, we define

\/5 S,,(Gq.,gq',’ >: ™ Id(w)ks w” kn) ‘ (3.4.6)

The subscript s(s") is plus or minus according to whether the 2
function of argument ca(ca") is a plus or a minus function. Some-
times the first subscript will be omitted when V appears in an
integral with respect to k , just as K is sometimes used to denote
K, » whichever is appropriate. An empty pair of parentheses is used
to indicate omitted subscripts. The functions V may also be
expressed as

Vo) ZuEZE) | ZE)

= -+ (3.4.7)

(5.~ &R (.-Gl -

(=

3.5 Zero Frequency Response

The nonlinear response at zero frequency is now shown to be a
polarization of the plasma with no associated species current densities.
This result, which is established independently of the perturbation
expansion, is important because steady state currents would remove the

plasma. The zero frequency component of the lowest order nonlinear
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contribution to the potential is determined by residues.

The absence of steady species current densities associated with
large amplitude excitation may be shown in two ways. First we note
that the zero frequency potential must be an even function of x
because the charge density produced bf the grid pair satisfies the
relation pe(x,t + ﬂ/wo) = pe(—x,t) and hence there is no preferred
direction relative to the grid when the excitation is time-averaged
over one period., The only possible source of a zero frequency poten-
tial in the plasma is the inequality of tye charge-to-mass ratio for
the two species, which would lead to a pd;ential which is an even
function of x . Hence, there cannot be any zero frequency species
current densities at X = 0 . The Vlasov equation implies species

continuity equations, which are obtained as velocity integrals of

Equation (1.2.1), namely

2 Ny +“a ‘[7O<T—O ) (3.5.1)

ot X
in which Za is the particle current density of species a . For
the zero frequency component this equation states that the species
particle current densities are divergenceless; since they are zero at
X = 0 they must be zero everywhere. This result is independent of
the perturbation expansion.

The second method of demonstrating the absence of species particle
current densities is by explicit calculation, and is therefore valid
only to lowest nonlinear order in the perturbation expansion. From
Equation (3.2.2), solving for Gfa(k,v,w) , multiplying by v ,

substituting for fﬁ(x,v,t) from Equation (3.3.4), and integrating

6l



with respect to v , we have

) i a ".u':\\/‘ &\V
S (ko) = gﬂa 8@@,@ Q0 Moy,

L oo
Co
%-_\ dl- L(,Jt A ' - L((.l.)/+ L) ')t
T Ma R (ar)z
O -.oo L

oo

oO
dkdk! k” L(hdé)x’ £ v 93 a(:oa/ol VH‘
XJ e KO W (K" AT v
~oo

(v—w7r') —J

w= 0 the two velocity integrals vanish so that &I (k,0) = 0 .

(3.5.2)

- 0000

When

Hence there are no zero frequency species particle current densities
We now determine the spatial behavior of the lowest order zero

frequency potential in the dominant pole approximation. Substituting

from Equations (3.3.1) and (3.3.14), the quantity Sa(o) (x,v) of
Equation (3.3.15) is

SOx ) =

a 9~0u/w -X-'\ a,w/bv-1
e e<x>e ABav T +AB2 S0 ek
* Shufav 3 (3l fov |

_FA‘%@( )& A B %H\B -g; V+C*'QJ+ (3.5.3)

in which kI = Im{kl} . The Laplace-Fourier transform of this

quantity, Sa(o) (k,v,w) = T[Sa(o) (x,v)] , is
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Silbed= I‘C%‘*{E(&a—a TN ﬁﬁ%{} ReBiky) 0

in which > (<) refers to the first (second) curly bracket in
Equation (3). Introducing this expression into Equation (3.2.4),
analytically continuing the velocity integrals in the dielectric
function, and performing the Laplace-Fourier inversion, the zero
frequency component of the potential is [see Equation (3.3;17)] given

by

53 0 . thx
AT E’W k3K2§0 (h-BtKI)ZU
X (A*B) V6,0, '/1§)+(AB) Vo (O)Hlf *)]

%’kr R (;S (k+81kI)Z U
X (A B)V (O 'e'g )+(AB*)V+<O ’/agl )j (3.5.5)

in which U = mz q./m a 4 . In the static limit, because of the
paa’ oo

identity 2' _(0) = - , the plus and minus dielectric functions are

equal, i.e., K,(k,0) = 1+ (k°/k’) , where ky is defined after

Equation (2.1.2). The coefficients of the V's are

A*B - O‘OXQR o ’ (3.5.6)
Qi ) (” a5 2 KLG)R G §l 3
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/\ES*‘ Gbxbfzﬁ)o [ | |
1 /)T \Bed aL|cpz 2c. - (3-5.7)
t WIS
Making use of the identities 2',(0) = - 2 and 2",(0) = +2/mi

[from Equations (2.2.4) and (3.3.7)] in Equation (3.4.7), we have

| 2
VL0 20 =l 9 R o

i [T §| tu/a

T -

! ‘ _ +E,
\/i"(o)ﬁfzgr) Z é S%? :t g th (3.5.9)

(3.5.8)

20)= Z (_ . §)+8 —-———————%Wi' 3.5.10
\4:—({))-%f°‘§;)-— {; de.€; :4: thﬁZéi- (3.5.10)
! ]
\/-_l:+(0“ . *) \;Z*éfg‘,%? £ + g.i:t (3.5.11)

Using Equations (3.3.6), (3.3.7), (6), (7), (8), and (9), we have

_ {‘_Oé__a(uo l Z+ % D*él_ 1
[];PV (%) a Joif BKL@\BI bx§, J .)

where [ ], denotes the first square bracket in Equation (3.5.5).

Using Equations (3.3.6), (3.3.7), (3.3.9), (6), (7), (10), and (11),
we determine that [ ]  equals [ ], . The plus and minus functions
are equal and we can evaluate Equation (5) by residues. Suppressing

an obvious group of constants, the integral to be evaluated is



(neglecting Debye shielding poles)

I= F’: euézx | + | (3.5
R k| (R—=ik)" (k+RiRD)| . .

Evaluating by residues, we have

I-_-_-__L__..Le (3.5.

Hence, we obtain

C@(x) GoXo) Wo ]
B (@“’) L CEER KGR Ry

- ~BRrl¥|
X@I S UL [Z(ig. ET* 7 s

J

For a plasma consisting of electrons and singly charged ions at the

same temperature Ui = U= - Ue » where
3
U = ne = (3.5.
CoBKT)= -

With the power series expansionS

/ . - I~
JlC)=-2-2miTe k.. .s.

"Equation (15) becomes

13)

14)

15)

16)

17)
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SCO)< ) _ (5'0;(0 B U
a | SRR KIGIPRE Ry
{Im (S +a] i éRkI/xl

E..‘]é . (3.5.18)
Since u << 1 , using the definition of kD , we finally obtain
__sﬁ@_ AT ezCUo)(GZch% ' éﬁkﬂxl (3.5.19)
T4 RURAmQE RE RIIQEFBK_,(S !

as the zero frequency component of the lowest order nonlinear poten-

tial in the plasma.



IV. DOUBLE FREQUENCY RESPONSE

- We now consider the response obtained from the Laplace-Fourier
inversion of Equation (3.2.4) with the partial excitation given by
Equation (3.3.18), which was shown to be adequate to determine the
double frequency response.

In Section 1 the Fourier inversion integral for the steady-state
double frequency response is obtained. The primitive inversion
contour is deformed in the k plane to a contour having the general
character of the path of steepest descents for the ion integral in the .
linear problem. Section 2 describes the transformation of the variable“
of integration from k to g = 2wo/kai and the separation of the
integral into ion-like and electron-like integrals. Sections 3, 4,
and 5 describe the treatment of important numerical considerations in
the evaluation of the ion-like integrals, of the electron-like inte-

grals, and of the residue contributions, respectively. The calcula-

tions and numerical results are described in Section 6.

4.1 Formulation of Fourier Integrals and Deformation of Contour

The contribution of species a to the Laplace-Fourier transform
of the partial excitation under consideration is denoted by

e-Ziwot

Sa(+)(k,v,w) = T[ Sa(#)(s,v)] . From Equations (3.3.1) and

(3.3.14), we have
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Q‘Foo(/av a oo(/@V 4.1.1
X ol )QV{( -3,Q ()i-_\ ( ) V&V-FQQL)} : oy

Evaluating the integrals, this is

‘ :
S :) (kv i) = a w 3&@0)%%((%—8)

‘ 9___ aWCo:x/av ’
{-&V~§ ag (R—ER|)+ QVQV-{-— gal.);) (k +?)R|) . (4.1.2)

The Fourier transforms are valid throughout the k plane, except at

k = 2k1 . Introducing this expression into Equafion (3.2.4), and
analytically continuing the functions defined by velocity integrals,

there results, in an obvious notation,

kw4
16 (- Ecoo) kBEF 2 K(R wﬂ

\ZH—( G)H'( g{ V- (kﬂou tl“ ) 4.1.3
Xgu"‘ (k) | (eerk) [ O

"Accordingly, the Fourier inversion integral from which the double

.frequency response may be obtained according to Equation (3.3.17)

is
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o) B iz )

* x) dk L x\/ a2 ke S,
"AB;U"‘ [Z;" R F2IK_ kadjﬁ<t<~ 2k)

Jk e, \/4-+ Rq%\ /2 5!)
‘{b@ZK_F k,ﬂ@o}](k"akJ

de_eRx\/_ (Pvf::;,—&« S
E-ﬂ" P2 (R 2w.) [(k+2k,)

+

-+

jok elkx\/f— ()Zﬁ%” E‘;/Zg/)
2T R (R 2wafRize) -

The evaluation of these integrals by methods similar to those used

(4.1.4)

+

in the linearized problem is now performed. They will be expressed as
the sum of a residue contribution, of ion-like integrals, and of
electron-like integrals. By an ion-like (electron-like) integral is
meant an integral whose integrand is a product of a factor
eZiz/C-t;2 (eZiz/c-ugz) and a function not exhibiting exponential
behavior.

We consider positive values of x . In each of the four integrals

2w
(for given o ) of Equation (4) the same function Z'+[ kao ) appears
- (o]

both in V and in K . Therefore, the relation of the primitive

Fourier inversion contour to branch cuts is the same as in the

2wo 1/2

linearized problem. See Figure 3. Because V__ [ FZ; » My Ty ]

has a pole at k = 2k1 , we proceed in the k plane directly to the



deformed contour shown in Figure 9. For z 2 1.9 , this contour has

the general character of the path of steepest descents for an ion-like

integral.

We consider the integrals whose primitive contour of integration

o 1/2
Vs ( EZ; s Wy )

as Jk| 0, 0 < arg{k} < 7, must be determined. In this region,

is the negative real axis. The behavior of

the asymptotic behavior

Zi(g)mg_a Zi'(S)N-E S-S (4.1.5)

gives

I2 7 ( tt °G) 2
i
t(g el ) £ o R (4.1.6)
The behavior of V (¢ _,xu I/ZC ) as k + 0 on the positive
‘+2 *Ta’ o a
axis is the same. Hence, there is a simple pole of the integrals at
k = 0, as in the linearized case. It has no effect on the calcula-
tion after the folding of the contour in the k plane,
As |k| + =, V+( )(C,C') + constant. Hence, the deformation of
contour described can be carried out. Denoting the deformed contour

by C , we have

SH?X) A{Uﬁ P e‘k" V"“*'(kaau hg) i:: b= )

——

APTED EERCE ‘EZK(kEwo

e [y v emaddl] L o
orR¥R+2R) Fe(kew)  FEKC(R 2a) :

(4.1.7)
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The character of the residue contribution, P , will be considered

below.

4.2 Transformation of Variable of Integration and Separation of

Integrals

We now make a transformation of the variable of integration to

[al
1

= 2wo/kai . In terms of this variable,*

I s
kl:F'Eihd é; + éa )

For the case f2 <1 (f= wo/wpi , as before) to which we now limit

ao
=TI a:)ogl (4.2.1)

consideration,

F2K¢<kx‘?°~’o —éifeKi(g) _ (4.2.2)

As noted in treating the zero frequency component, for a plasma composed
of electrons and singly charged ions at the same temperature,
Ui = U= - Ue » where U is given by Equation (3.5.16). The definition

of the dimensionless distance, 2z , remains unchanged. Making use of

these relations, there results

* The relation between g1 and kj is unchanged: Ly =
wo/klai « Also, as before, &, = 1.45 - 0.601 .
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RO T FRkE T Ko TR e
in which C' denotes the contour of Figure 6, and
L (02X
C ,an-( ) (wj E_ECaKuS]a (4.2.4)

The presence of the V's prevents a direct resolution into
electron-like and ion-like integrals of the sort achieved in Equation
(2.2.7) through the use of Equation (2.2.6). We make use of the

relation

-2
| V-I@;tg/) =M. i(S;tS') +4AT 1 B (g)i§'> e 5 (4.2.5)

where

N[ —3H0-25R)6-s)] .y
R(g)g)_[ (g_gl)a J (4.2.6)

which follows from Equations (3.3.7) and (3.4.7). With this relation

and Equation (2.2.6) we obtain the desired resolution:
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where P' = P/(-2miC) .

The first term consists of the sum of an ion-like integral and an
electron-like integral whose integrands differ in the same way as the
integrands of the ion and electron integrals in the linear response.

That is, the integrands differ only in that one contains the factor

2

2
e-c while the other contains the factor u1/2e—uC

See Equation
(2.2.7). If the curly brackets contained unity, the first term would
be the potential in the linearized thecory at the point 2z . The
second and third terms are cast in a form which resembles, as far as
is feasible, the integrals in the linearized theory. A rearrangement

of the integrals which is convenient from a computational standpoint

is
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This expression for S(+)(x)in the dominant pole approximation will be

evaluated numerically below. The double frequency component of the
-2iwgt S(+)(x)} )

lowest order nonlinear response is given by 2Refe

See Equation (3.3.17).

4.3 Evaluation of Ion-like Integral

. 2
The path of steepest descents for the integrand ele/C-c is

chosen for the evaluation of the ion-like integral. Since the dominant
pole approximation is probably not valid for z S 2.5 , as is discussed
-below, the steepest descent contour lies below the first pole for all
values of 2z which are of interest. Certain important numerical

considerations are now discussed.

It is converient to treat the parts of the ion-like ihtegral which



contain V++ (c,tcl) and R(c,tcl) as a unit. In preparation for

this, we state the identity

Z’j’;@):g’*‘é‘(’“asz)Z;(g) , (4.3.1)

which may be obtained from Equation (3.3.7). Using this identity and

Equation (3.3.9) we obtain the two relations

\/+ +(§,§.)= (ngg)z‘f‘ g<§ ; >+§-R<§,S,)Zl+(§) (4.3.2)

Z(<
V,_ (g S) (S+<§))?- ST ~R(§“~>| Z (g) (4.3.3)

Application of Equation (2) gives

Vialss) , FKLIRES) _Z4() | _ ZLH%IR6s)
(6-5,) g3 (5-s) ($-5)3 é(ggnz 5(5-$,)

. (4.3.4)

Similarly, from Equation (3), we have

Ve(ss), FEKGIRG; 5)_ Z+(5) 2 Z /‘4IR<Q 5')
(S+s) « TF (6+%) Gwe)3 SGrse  G(S+S) ‘

.5)

Combining these results and using the relation Z'+(§1) = - Z"(ul/2

2,0,
which results from the fact that & is a solution of the dispersion

relation fZK*(cl) = 0 [see Equation (2.2.8)], we have
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Since [g] $ 0(1) for the ion-like integral, it is necessary to use

an approximation based upon the power series expansion

2/689-ZU =7 5550 + 4, Z (€55 -)+ - wsm

We now consider the part of the ion-like integral which contains
1/2 172, 172
/ / Z,H /

1/2

1/2 . .
V*t(u g, Cl) . The function V§+(p cl) is regular at

/2.,

L, and substituting into the appropriate
1 g ppTOp

=% , asmay be verified by expanding z', (u
1/2

z) and Z"+(u
in power series around u

form of Equation (3.4.7). The result is

l/ : | ~
(ELVZQ»)“‘%'ZZSU)@&SD(Q‘§.)+' L (4.3.8)

m

V11<yyz ﬂ;%;} 53;Zi

172 1/2

It is used to approximate V"(u g,u ;l) in the ion-1like integral.

The function V’_(ul/zc,-ul/zcl) is conveniently expressed for

computational purposes in the ion-like integral as
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ll(ng) EL/L(§T§) E\(F‘f‘S) '(4.3.9)

The second and third terms consist of the product of a large factor
(u'l/2 and u !, respectively) and a small factor. The computational
difficulty is removed by expanding Z"+(u1/2c) and Z'+(u1/zc) in
power series around ullzcl . The result is

he o Zo%) Ze (%)
\4-( 5;‘(.‘«) WS )' ( Y + &+ g)(

) A ' |
l’lZ+ CM"IQ g, “.‘_Z(L_Qf’/zgl) ) 3 R coo
* R1(5+4) (g g,) (S+ g;)ﬂ . f""<§‘51) | zp(“'“*’+~-.(4.3.10)

The relations derived in this section make it possible for us to
evaluate the ion-like integral of Equation (4.2.8) along the path of
steepest descents through the appropriate saddle point of the exponent

. 2
in the function e212/C-C .

4.4 Evaluation of Electron-like Integral

The part of the electron-like integral in Equation (4.2.8) con-
taining a factor u1/2 bears the same relation to parts of the ion-
like integral that the electron integral bears to the ion integral in

the linearized problem. Therefore, numerical integration of this



integral may be started at a value of 7 for which |cl is sufficient-
ly large that asymptotic expansions may be used to approximate deriva-
tives of Z’(c) in the integrand. The deformed contour of integration
used is that chosen for the electron integral in the linearized problem
with 2z + 2z , The quantity in square brackets containing

V+.+_(C’i§1) is expressed as

V++(§, g') _ V+—(§,'§b
(g‘gx) (Q-&— gl)

l ‘ e§'(3S21+§lB) i 495
=ZOZE (e L

In the asymptotic region, this is approximately equal to (12C1/c4) .

(4.4.1)

Evaluation of the integral containing the factor of Equation (1),
based on this approximation, shows that it makes a negligible contribu-
tion to a three-place calculation of [ch(x)/f6(-2ﬂiC)]. The quantity

1/2 1/2

in square brackets containing V++(u g, cl) is expressed in a
form convenient both for computation and for inspection of its behavior

as |g| becomes large, as

V++@L5k3251)_ V+-(@"€,‘é£'5) _4¢ 7 '/L> ( )Z(

¥,
(S9! (G+s) | w3 > g)

[}

[3+(3./27] A A 4.4.2
X[ (£/¢ ajs C{Z( ZS '§Z+(f" d[‘ _, /g)z_l (4.4-2)
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The evaluation of the remaining electron-like integral of Equation
(4.2.8) is now coﬁsidered. This integral differs from the other
electron-like integral in not having a counterpart in the ion-like
integral. Hence, it is not possible here to start the numerical
integration in the asymptotic region for plasma dispersion functions of
argument & . For evaluation, the quantity in curly brackets, which
we denote by N , must be expressed in two forms for |z| less than

and greater than 0(1) . These forms are

2 [l+ 3(€/§,)a_-’

=_ +2(1-2p%d) 4.
N wizg 3~ [ = (816)2] Rz A

Ne - 2z _[3+(§./S)aj
> TERG[-Gs/sR| [ - (s/5F]

The absence of a factor [f2K+(C)] in the integral being considered

+ E(“”Btkgz) (4.4.4)

permits us to use as a contour of integration a straight line from the

origin with an angle to the positive real axis of -w/6 .

4.5 Residue Contributions

The residue contributions to [Seq(x)/f6(-2niC)] may be determined
from Equation (4.2.3). There is a residue contribution from each term
which contains [f2K+(c)] . The residue contributions in Equation

(4.2.7) are given by

" 5 S 5 f h
Fefes £2K4(5) 5 S, [_ (H% LsHibses L(4.5.1)
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The first group of terms has a double pole at ¢ =1¢,, the second a
simple pole.

To obtain the residue of the double pole, each factor in the first
group of terms is expanded in a Laurent series around ¢ = Cl . The

Laurent series for [le(*(z‘;)r1 is represented by

! —
'F2P<%QS) (§ gi

where a = fzK'+(c1) and

Q=limd [ﬁi&sﬁﬂ‘ _ 1 BPie]
[a) g —_—

+ Ao+ - - (4.5.2)

- (4.5.3)
- c =
o~ (§-¢) SIS G] K]
The expansions for ;2, eZiZ/C , and [V+*(;,c1) - V*+(u1/2;,u1/2c1)]
[see Equation (4.3.8)], are
2 2 -~ 2
Cf=8f+25,(5-5)+(5-¢) (4.5.4)
242 22 2,
s =g — &= egl (S-S )+ (4.5.5)

g:Z
[Vs,6.5) V% (% e )]

~_€[ /// ”IQU/KJ 3[2 ¢ (g) /Z&ngkc g s

The residue of the double pole is the coefficient of (g - t;l).1 in

the product of the Laurent expansions. The total residue is
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X

The V's are determined by

V+-(§f§\):§"5'a[ﬁ+<“ ga)Z;(gﬂ : (4.5.8)

4.6 Numerical Results

The range of z for which the dominant pole approximation yields
a valid prediction of the lowest order nonlinear response is now
estimated. The substantial deviations of the potential in the linear
theory from the dominant pole approximation are two: the large ampli-
tude, heavily damped, contribution near the grid, and the electron
wave at large distance, which is weakly damped.

Let each of these two contributions be represented approximately
by an exponential term with a complex wave number. Each produces a
‘contribution to Sa(*)(k,v,w) of the same form as Equation (4.1.2)
with an appropriate amplitude and with a pair of simple poles at

t 2kg or 2ke . The subscripts g and e denote the heavily



damped response near the grid and the electron wave, respectively.
The quadratic combination of the linear response which drives S(*)(x)
has a wave number Spect;uﬁ characterized by poles at two times those
in the linear response. Accordingly, since the heavily damped
response near the grid gives a negligible contribution to the linear
response for z 2 5 , we expect that neglect of it in calculation of
S(+)(x) leads to negligible error for z 2 2.5 . Furthermore, since
the electron wave produces deviations from the dominant pole response
in the linear theory for z 2 20 , we expect that calculation of
S(+)(x) on the basis of the dominant pole approximation is not valid
for z 210 .

The numerical evaluation of the nonlinear response was performed
on the TRW On-line Computer.8 The results are displayed in Figure 10.
No simple interpretation in terms of a dominant pole is possible. The
dominant integral for all values of 2z 1is the electron-like integral

of Equation (4.2.8) which does not contain the factor ul/z . The

integrand decreases more rapidly with increasing |z| than the electron

integral in the linear theory and becomes very small long before the

2

absolute value of the factor e W°

starts to decrease substantially
below unity. Thus, the response is damped much more strongly than the
electron wave in the linear theory. For small values of 2z the
residue contributions are comparable with the integral just discussed;
by z = 7 , they become negligible. An interesting characteristic of
the response is that, although the damping is sufficiently strong to

be characteristic of an ion wave, the change in phase is so small as

to suggest an electron wave.
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V. CONCLUSION

We have introduced a new method for the numerical evaluation of
the Fourier inversion integral which occurs in the linearized theory
of grid excitation of low frequency longitudinal waves in a correla-
tionless plasma, The advantages of the method, discussed above, lead
us to view the variable ¢ = wolkai as more appropriate than the wave
number, k , for treating this problem. The numerical results obtained
for the case of finite separation between the grids demonstrate that
the nature of the response is determined primarily by the character-
istics of the plasma, as embodied in the dielectric function, rather
than by the spatial characteristics of the excitation. In the dipole
limit, we have verified the results obtained by Gould.4

We have developed a perturbation treatment of the Vlasov equation
which is appropriate for the determination of the steady-state reponse
of a plasma to grid excitation of amplitude somewhat greater than that
for which the linear theory is appropriate. In the lowest order of
the theory there are components at zero frequency and at twice the
applied frequency. The zero frequency component is a static polariza-
tion of the plasma. There are no zero frequency species particle
current densities. This result is independent of the perturbation
expansion.

The double frequency component involves a double integral with
‘respect to Fourier transform variables which is further complicated by
>the presence of branch-points in the plane of one Fourier transform

variable whose position depends on the value of the other Fourier
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transform variable. The evaluation of the double frequency response
is rendered feasible by approximating the linear response by its
dominant pole contribution. A single Fourier inversion integral is
obtained. It is evaluated by methods similar to those used in the
linear problem. The double frequency response does not have a simple
interpretation. It is strongly damped, like an "ion wave', but has
a slow phase variation with distance, like an "electron wave'".
Possible extensions of the present work which might shed light
on the nature of the nonlinear wave include consideration of different
values of the mass ratio and of the ratio of electron to ion tempera-

ture.



APPENDIX A
INVERSION OF CONFORMAL TRANSFORMATION FOR

PATH OF STEEPEST DESCENTS

The inversion of the conformal transformation, Equation (2.3.4),
that is, the determinations of w(t) , is performed by iteration. Two
iterative procedures* are used; each is convergent over only part of
the range - 3.1 <t s 3.1 . One procedure is based upon the

variable u = w - L and the recasting of Equation (2.3.4) as

£ (Ut w, I

25\ W+ 3we

= (A.1)

The other procedure is based upon the variable T = w/w0 and the

recasting of Equation (2.3.4) as

3
+ T
T = [~

= = (A.2)
53 + (.tc:/’ Z;Z/S‘W/02‘> ,

Equations (A.1) and (A.2) are of the form v = G(v) . They are
employed to obtain successive approximations to v by the relation

v

nel = G(vn) . The procedure of Equation (A.1) is convergent for

positive values of t and for small negative values of t . The
procedure of Equation (A.2) is convergent for values of t less than
a small negative value. The two regions of convergence overlap for

all values of z in the range of interest. In both cases, zero is a

*® These procedures were developed by Professor B. D. Fried.
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satisfactory value for vy - For iterative procedures of the type
used here, little advantage in reduction of computation time is gained
by a '"favorable' choice of vy » such as an approximation given by a
power series in t .

The convergence characteristics of iterative procedures based on
a functional relation of the fixed point10 form v = G(v) can be

understood to some extent by consideration of the relation

Vn+7_- VVH—\ - 6 (Vm-l) ’—G(Vn) , (A.3)

Expanding G(vn+1) in a series in powers of (vn - vn) , there

+1
results

Vhaez = Ve - 6/ (Vn) + O (Vm\'vn). (A.4)
Va1t ~Vn

This suggests that an ite?ative procedure converges well when

IG'(vn)I is small compared with unity. In the procedures used here,

this rule is obeyed. Failure of convergence occurs when |G'| = O(1).
'The procedure of Equation (A.l) is used, with the modification

of variables specified in Section 2.5, to determine the part of the

path of steepest descents for eiz/c-ucz which is used in evaluating

the electron integral, viz., that part for which 0 <t < 3.1 .
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